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Abstract

Word lattice decoding has proven useful in spoken language translation; we argue that it provides
a compelling model for translation of text genres, as well. We extend lattice decoding to hierar-
chical phrase-based models, providing a unified treatment with phrase-based decoding by treating
lattices as a case of weighted finite-state automata. In the process, we resolve a significant com-
plication that lattice representations introduce in reordering models. Our experiments evaluating
the approach demonstrate substantial gains for Chinese-English and Arabic-English translation.

1 Introduction
When Brown and colleagues introduced statistical machine translation in the early 1990s, their
key insight — harkening back to Weaver in the late 1940s – was that translation could be viewed
as an instance of noisy channel modeling (Brown et al., 1990). They introduced a now standard
decomposition that distinguishes modeling sentences in the target language (language models)
from modeling the relationship between source and target language (translation models). Today,
virtually all statistical translation systems seek the best hypothesis e for a given input f in the
source language, according to

ê = arg max
e
Pr(e|f) (1)

An exception is the translation of speech recognition output, where the acoustic signal generally
underdetermines the choice of source word sequence f . There, Bertoldi and others have recently
found that, rather than translating a single-best transcription f , it is advantageous to allow the MT
decoder to consider all possibilities for f by encoding the alternatives compactly as a confusion
network or lattice (Bertoldi et al., 2007; Bertoldi and Federico, 2005; Koehn et al., 2007).

Why, however, should this advantage be limited to translation from spoken input? Consider:
even for text, there are often multiple ways to derive a sequence of words from the input string.
Segmentation of Chinese, decompounding in German, morphological analysis for Arabic — across
a wide range of source languages, ambiguity in the input gives rise to multiple possibilities for the
source word sequence. Nonetheless, state-of-the-art systems commonly identify a single analysis
f during a preprocessing step, and decode according to the decision rule in (1).

In this paper, we go beyond speech translation by showing that lattice decoding can also yield
improvements for text by preserving alternative analyses of the input. In addition, we generalize



lattice decoding algorithmically, extending it for the first time to hierarchical phrase-based transla-
tion (Chiang, 2005; Chiang, 2007).

Formally, the approach we take can be thought of as a “noisier channel”, where an observed
signal o gives rise to a set of source-language strings f ′ ∈ F(o) and we seek

ê = arg max
e

max
f ′∈F(o)

Pr(e, f ′|o) (2)

= arg max
e

max
f ′∈F(o)

Pr(e)Pr(f ′|e, o) (3)

= arg max
e

max
f ′∈F(o)

Pr(e)Pr(f ′|e)Pr(o|f ′). (4)

Following Och and Ney (2002), we use the maximum entropy framework (Berger et al., 1996) to
directly model the posterior Pr(e, f ′|o) with parameters tuned to minimize a loss function repre-
senting the quality only of the resulting translations. Thus, we make use of the following general
decision rule:

ê = arg max
e

max
f ′∈F(o)

M∑
m=1

λmφm(e, f ′, o) (5)

In principle, one could decode according to (2) simply by enumerating and decoding each f ′ ∈
F(o); however, for any interestingly large F(o) this will be impractical. We assume that for many
interesting cases of F(o), there will be identical substrings that express the same content, and
therefore that a lattice representation is appropriate.

In Section 2, we discuss decoding with this model in general, and then show how two widely
used classes of translation model can be easily adapted for a lattice translation framework; we
achieve a unified treatment of finite-state and hierarchical phrase-based models by treating lattices
as a subcase of weighted finite state automata (FSAs). In Section 3, we identify and solve issues
that arise with reordering in non-linear FSAs, i.e. FSAs where every path does not pass through
every node. Section 4 presents two applications of the noisier channel paradigm, demonstrating
substantial performance gains in Arabic-English and Chinese-English translation. In Section 5 we
discuss relevant prior work, and we conclude in Section 6.

2 Decoding
Most statistical machine translation systems model translational equivalence using either finite
state transducers or synchronous context free grammars (Lopez, to appear 2008). In this section
we discuss the issues associated with adapting decoders from both classes of formalism to process
word lattices. The first decoder we present is a SCFG-based decoder similar to the one described
in Chiang (2007). The second is a phrase-based decoder implementing the model of Koehn et al.
(2003).

2.1 Word lattices
A word lattice G = 〈V,E〉 is a directed acyclic graph that formally is a weighted finite state au-
tomaton (FSA). We further stipulate that exactly one node has no out-going edges and is designated
the ‘end node’. Figure 1 illustrates three classes of word lattices.

A word lattice is useful for our purposes because it permits any finite set of strings to be rep-
resented and allows for substrings common to multiple members of the set to be represented with
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Figure 1: Three examples of word lattice: (a) sentence, (b) confusion network, and (c) general word lattice.

a single piece of structure. Additionally, all paths from one node to another form an equivalence
class representing, in our model, alternative expressions of the same underlying communicative
intent.

For translation, we will find it useful to encode G in a chart based on a topological ordering of
the nodes, as described by Cheppalier et al. (1999). The nodes in the lattices shown in Figure 1 are
labeled according to an appropriate numbering.

The chart-representation of the graph is a triple of 2-dimensional matrices 〈F,p,R〉, which can
be constructed from the numbered graph. Fi,j is the word label of the jth transition leaving node i.
The corresponding transition cost is pi,j . Ri,j is the node number of the node on the right side of
the jth transition leaving node i. Note that Ri,j > i for all i, j. Table 1 shows the word graph from
Figure 1 represented in matrix form as 〈F,p,R〉.

0 1 2

a 1 1 b 1 2 c 1 3
a 1

3 1 b 1 2 c 1
2 3

x 1
3 1 d 1

2 3
ε 1

3 1
x 1

2 1 y 1 2 b 1
2 3

a 1
2 2 c 1

2 3

Table 1: Topologically ordered chart encoding of the three lattices in Figure 1. Each cell ij in this table is a
triple 〈Fij ,pij ,Rij〉

2.2 Parsing word lattices
Chiang (2005) introduced hierarchical phrase-based translation models, which are formally based
on synchronous context-free grammars (SCFGs). Translation proceeds by parsing the input using
the source language side of the grammar, simultaneously building a tree on the target language side
via the target side of the synchronized rules. Since decoding is equivalent to parsing, we begin by
presenting a parser for word lattices, which is a generalization of a CKY parser for lattices given
in Cheppalier et al. (1999).

Following Goodman (1999), we present our lattice parser as a deductive proof system in Fig-
ure 2. The parser consists of two kinds of items, the first with the form [X → α • β, i, j] repre-



Axioms:

[X → •γ, i, i] : w
(X w−→ 〈γ, α〉) ∈ G, i ∈ [0, |V | − 2]

Inference rules:
[X → α • Fj,kβ, i, j] : w

[X → αFj,k • β, i,Rj,k] : w × pj,k

[X → α • β, i, j] : w
[X → α • β, i,Rj,k] : w × pj,k

Fj,k = ε

[Z → α •Xβ, i, k] : w1 [X → γ•, k, j] : w2

[Z → αX • β, i, j] : w1 × w2

Goal state:
[S → γ•, 0, |V | − 1]

Figure 2: Word lattice parser for an unrestricted context free grammar G.

senting rules that have yet to be completed and span node i to node j. The other items have the
form [X, i, j] and indicate that non-terminal X spans [i, j]. As with sentence parsing, the goal is a
deduction that covers the spans of the entire input lattice [S, 0, |V | − 1].

The three inference rules are: 1) match a terminal symbol and move across one edge in the
lattice 2) move across an ε-edge without advancing the dot in an incomplete rule 3) advance the
dot across a non-terminal symbol given appropriate antecedents.

Using memoization of previously encountered items, this parser runs in polynomial time.

2.3 From parsing to MT decoding
A target language model is necessary to generate fluent output. To do so, the grammar is intersected
with an n-gram LM. To mitigate the effects of the combinatorial explosion of non-terminals this
entails, a pruning strategy is necessary. We use cube-pruning (Chiang, 2007).

2.4 Lattice translation with FSTs
A second important class of translation models includes those based formally on FSTs. We
present a description of the decoding process for a word lattice using a representative FST model,
the phrase-based translation model described in Koehn et al. (2003).

Phrase-based models translate a foreign sentence f into the target language e by breaking up
f into a sequence of phrases f

I

1, where each phrase f i can contain 1 or more contiguous words
and is translated into a target phrase ei of 1 or more contiguous words. Each word in f must be
translated exactly once. To generalize this model to word lattices, it is necessary to choose both a
path through the lattice and a partitioning of the sentence this induces into a sequence of phrases
f

I

1. Although the number of source phrases in a word lattice can be exponential in the number of
nodes in the lattice, enumerating the possible translations of every span in a lattice is in practice
tractable, as described by Bertoldi et al. (2007).

2.5 Decoding with phrase-based models
We adapted the Moses phrase-based decoder to translate word lattices (Koehn et al., 2007). The
unmodified decoder builds a translation hypothesis from left to right by selecting a range of un-
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Figure 3: The span [0, 3] has one inconsistent covering, [0, 1] + [2, 3].

translated words and adding translations of this phrase to the end of the hypothesis being extended.
When no untranslated words remain, the translation process is complete.

The word lattice decoder works similarly, only now the decoder keeps track of the number of
nodes that have been covered, given a topological ordering of the nodes. For example, assuming
the third lattice in Figure 1 is our input, if the edge with word a is translated, this will cover two
untranslated nodes [0,1] in the coverage vector, even though it is only a single word. As with
sentence-based decoding, a translation hypothesis is complete when all nodes in the input lattice
are covered.

2.6 Non-monotonicity and unreachable nodes
The changes described thus far are straightforward adaptations of the underlying phrase-based sen-
tence decoder; however, dealing properly with non-monotonic decoding of word lattices introduces
some minor complexity that is worth mention. In the sentence decoder, any translation of any span
of untranslated words is an allowable extension of a partial translation hypothesis, provided that the
coverage vectors of the extension and the partial hypothesis do not intersect. In a non-linear word
lattice, a further constraint must be enforced ensuring that there is always a path from the starting
node of the translation extension’s source to the node representing the nearest right edge of the
already-translated material, as well as a path from the ending node of the translation extension’s
source to future translated spans. Figure 3 illustrates the problem. If [0,1] is translated, the decoder
must not consider translating [2,3] as a possible extension of this hypothesis since there is no path
from node 1 to node 2 and therefore the span [1,2] would never be covered. In the parser that forms
the basis of the hierarchical decoder described in Section 2.3, no such restriction is necessary since
grammar rules are processed in a strictly left-to-right fashion without any skips.

3 Distortion in a non-linear word lattice
In both hierarchical and phrase-based models, the distance between words in the source sentence
is used to limit where in the target sequence their translations will be generated. In phrase
based translation, distortion is modeled explicitly. Models that support non-monotonic decoding
generally include a distortion penalty, such as |ai − bi−1 − 1| where ai is the starting position of
the foreign phrase f i and bi−1 is the ending position of phrase f i−1 (Koehn et al., 2003). The
intuition behind this model is that since most translation is monotonic, the cost of skipping ahead
or back in the source should be proportional to the number of words that are skipped. Additionally,
a maximum distortion limit is used to restrict the size of the search space.

In linear word graphs, such as confusion networks, the distance metric used for the distortion
penalty and for distortion limits is well defined; however, in a non-linear word graph, it poses
the problem illustrated in Figure 4. Assuming the left-to-right decoding strategy described in the
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Figure 4: Distance-based distortion problem. How far is it from node 4 to node 0?

previous section, if c is generated by the first target word, the distortion penalty associated with
“skipping ahead” should be either 3 or 2, depending on what path is chosen to translate the span
[0,3]. In large lattices, this problem can be quite significant. The cost of swapping two adjacent
words in one path can grow arbitrarily large and may ultimately be impossible because of the
distortion limit in certain lattice structures.

Although hierarchical phrase-based models do not model distortion explicitly, Chiang (2007)
suggests using a span length limit to restrict the window in which reordering can take place.1 The
decoder enforces the constraint that a synchronous rule learned from the training data (the only
mechanism by which reordering can be introduced) can span maximally Λ words in f . As for
distortion limits, this limit is also poorly defined for non-linear lattices.

Since we want a distance metric that will restrict as few local reorderings as possible on any
path, we use a function ξ(a, b) returning the length of the shortest path between nodes a and b.
Since this function is not dependent on the exact path chosen, it can be computed in advance of
decoding using an all-pairs shortest path algorithm (Cormen et al., 1989).

3.1 Experimental results
We tested the effect of the distance metric on translation quality using Chinese word segmenta-
tion lattices (Section 4.1, below) using both a hierarchical and phrase-based system modified to
translate word lattices. We compared the shortest-path distance metric with a baseline which uses
the difference in node number as the distortion distance. For an additional datapoint, we added
a lexicalized reordering model that models the probability of each phrase pair appearing in three
different orientations (swap, monotone, other) in the training corpus (Koehn et al., 2005).

Table 2 summarizes the results of the phrase-based systems. On both test sets, the shortest path
metric improved the BLEU scores. As expected, the lexicalized reordering model improved trans-
lation quality over the baseline; however, the improvement was more substantial in the model that
used the shortest-path distance metric (which was an already higher baseline). Table 3 summarizes
the results of our experiment comparing the performance of two distance metrics to determine
whether a rule has exceeded the decoder’s span limit. The pattern is the same, showing a clear
increase in BLEU for the shortest path metric over the baseline.

4 Exploiting Source Language Alternatives
Chinese word segmentation. A necessary first step in translating Chinese using standard models
is segmenting the character stream into a sequence of words. Word-lattice translation offers two
possible improvements over the conventional approach. First, a lattice may represent multiple

1This is done to reduce the size of the search space and because hierarchical phrase-based translation models are
inaccurate models of long-distance distortion.



Distance metric MT05 MT06
Difference 29.43 27.86
Difference+LexRO 29.74 28.90
ShortestP 29.93 28.65
ShortestP+LexRO 30.72 29.92

Table 2: Effect of distance metric on phrase-based model performance.

Distance metric MT05 MT06
Difference 30.63 29.57
ShortestP 31.76 30.43

Table 3: Effect of distance metric on hierarchical model performance.

alternative segmentations of a sentence; input represented in this way will be more robust to errors
made by the segmenter. 2 Second, features from the target side of the training corpus can be used
to build an optimal segmentation of the training data. For example, a hypothesized Chinese word
consisting of two characters that also has a high probability of having a fertility of 2 might be a
good candidate for splitting into two separate words.3 Figure 5 illustrates a lattice based on three
different segmentations.

Arabic morphological variation. Arabic orthography is problematic for lexical and phrase-
based MT approaches since a large class of functional elements (prepositions, pronouns, tense
markers, conjunctions, definiteness markers) are attached to their host stems. Thus, while the
training data may provide good evidence for the translation of a particular stem by itself, the same
stem may not be attested when attached to a particular conjunction. The general solution taken is to
take the best possible morphological analysis of the text (it is often ambiguous whether a piece of a
word is part of the stem or merely a neighboring functional element), and then make a subset of the
bound functional elements in the language into freestanding tokens. Figure 6 illustrates the surface
form of Arabic orthography as well as a morphological segmentation. A possible problem with
this approach is that as the amount and variety of training data increases, the optimal segmentation
strategy changes: more aggressive segmentation results in fewer OOV tokens, but automatic eval-
uation metrics indicate lower translation quality, presumably because the smaller units are being
translated less idiomatically (Habash and Sadat, 2006). Lattices allow the decoder to attempt to use
the idiomatic surface forms but back off gracefully to a more aggressively segmented form of the
text when there is insufficient evidence for a good translation of the surface tokens. Furthermore,
since morphological analysis is an inherently ambiguous process, word lattices can effectively
capture the resulting ambiguity.

4.1 Chinese Word Segmentation Experiments
In our experiments we used two state-of-the-art Chinese word segmenters: one developed at Harbin
Institute of Technology (Zhao et al., 2001), and one developed at Stanford University (Tseng et al.,
2005). In addition, we used a character-based segmentation. In the remaining of this paper, we use

2The segmentation process is ambiguous, even for native speakers of Chinese
3This is reminiscent of the approach taken by Ma et al. (2007), but permits a hypothesized Chinese word to be

segmented differently in different contexts.
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Figure 5: Sample Chinese segmentation lattice using three segmentations.

surface wxlAl ftrp AlSyf kAn mEZm AlDjyj AlAElAmy m&ydA llEmAd .
segmented w- xlAl ftrp Al- Syf kAn mEZm Al- Djyj Al- AElAmy m&ydA l- Al- EmAd .
(English) During the summer period , most media buzz was supportive of the general .

Figure 6: Example of Arabic morphological segmentation.

cs for character segmentation, hs for Harbin segmentation and ss for Stanford segmentation. We
built two types of lattices: one that combines the Harbin and Stanford segmenters (hs+ss), and
one which uses all three segmentations (hs+ss+cs).

Data and Settings. The systems used in these experiments were trained on the NIST MT06 Eval
corpus without the UN data (approximatively 950K sentences). The corpus has been segmented
with the three segmentations. For the systems using word-lattices, we added the training data
corresponding to each segmentation used in the source lattice. A trigram English language model
with modified Kneser-Ney smoothing (Kneser and Ney, 1995) was trained on the English side
of our training data as well as portions of the GigaWord v2 English Corpus, and was used for all
experiments. The NIST MT03 test set was used as development set for optimizing the interpolation
weights using minimum error rate training (Och, 2003). The testing was done on NIST 2005 and
2006 evaluation sets (MT05, MT06).

Experimental results: Word-lattices improve translation quality. We used both a phrase-
based translation model, Moses (Koehn et al., 2007) and a hierarchical phrase-based translation
model, Hiero (Chiang, 2005; Chiang, 2007). These two translation models illustrate global theo-
retical contributions presented in Section 2 and Section 3.

Since we are using a relatively small parallel training corpus and no additional lexical resources,
the coverage of named entities (NEs) is rather poor. This is particularly problematic when us-
ing character-based segmentation. In order not to unfairly penalize the lattice system using the
character segmentation, we did not character-segment NEs when generating the segmentation lat-
tices. For this, we used a Chinese NE tagger (Florian et al., 2004), and only excluded NEs of type
PERSON.

The results are presented in Table 4. We test statistical significance using bootstrap resampling
(Koehn, 2004; Zhang et al., 2004).

Using word lattices improves BLEU scores both in the phrase-based model and hierarchical
model as compared to the single best segmentation. All results using our word-lattice decoding for
the hierarchical models (hs+ss and hs+ss+cs) are significantly better than the best segmentation
(ss) (p<0.05 and p<0.01, respectively). For the phrase-based model, we obtain significant gains
using our word-lattice decoder using all three segmentations on MT05 (p<0.01). The other re-
sults, while better than the best segmentation (hs) by at least 0.3 BLEU points, are not statistically
significant. Even if the results are not statistically significant for MT06, there is a high decrease in



Moses MT05 MT06
(Source Type) BLEU BLEU
cs 0.2833 0.2694
hs 0.2905 0.2835
ss 0.2894 0.2801
hs+ss 0.2938 0.2870
hs+ss+cs 0.2993 0.2865
hs+ss+cs.lexRo 0.3072 0.2992

Hiero MT05 MT06
(Source Type) BLEU BLEU
cs 0.2904 0.2821
hs 0.3008 0.2907
ss 0.3071 0.2964
hs+ss 0.3132 0.3006
hs+ss+cs 0.3176 0.3043

(a) Phrase-based Model (b) Hierachical Model

Table 4: Chinese Word Segmentation Results

Moses MT05 MT06
(Source Type) BLEU BLEU
surface 46.82 35.12
morh 50.87 38.41
morph+surface 52.25 40.08

Hiero MT05 MT06
(Source Type) BLEU BLEU
surface 52.53 39.91
morph 53.77 41.80
morph+sourface 54.53 42.87

(a) Phrase-based Model (b) Hierachical model

Table 5: Arabic Morphology Results

OOV items when using word-lattices. For example, for MT06 the number of OOVs in the hs trans-
lation is 484. The number of OOVs decreased by 19% for hs+ss and by 75% for hs+ss+cs. As
mentioned in Section 3, using lexical reordering for word-lattices further improves the translation
quality, a statistically significant gain (p<0.01) for both MT05 and MT06 (Table 4(a)).

4.2 Arabic Morphology Experiments
In our experiments we used a fairly aggressive segmentation and normalization of Arabic text,
most similar to the EN scheme described by Habash and Sadat (2006).

Data and Settings. For these experiments we subsampled the NIST MT08 training data (includ-
ing UN).4 For the morphology system, the size of the resulting subsampled data was 42M tokens
for Arabic and 37M tokens for English. For the surface system, the size of the subsampled data
was 25M tokens for Arabic and 30M tokens for English. To generate the translation model used in
the word-lattice system, we extracted rules from a corpus with two versions of the source. For all
systems, we used a 5-gram English LM trained on the non-UN part of the entire training data, plus
the portions of the UN data present in the morph/surface subsamples, and 45M words from English
GigaWord Corpus v3. The NIST MT03 test set was used as development set for optimizing the
interpolation weights using minimum error rate training (Och, 2003). Testing was done on NIST
2005 and 2006 evaluation sets (MT05, MT06).

Experimental results: Word-lattices improve translation quality. Results are presented in
Table 5. Using word-lattices to combine the surface forms with morphologically segmented forms
improves BLEU scores both in the phrase-based and hierarchical models. All improvements are
statistically significant (p < .01).

4We used a subsampling method proposed by Kishore Papineni, personal communication, that aims to include
training sentences containing n-grams in the test data.



5 Prior work
Lattice Translation. The ‘noisier channel’ model of machine translation has been widely used
in spoken language translation as an alternative to selecting the 1-best hypothesis from an ASR
system and translating it (Ney, 1999; Casacuberta et al., 2004; Zhang et al., 2005; Saleem et al.,
2005; Matusov et al., 2005; Bertoldi et al., 2007; Mathias, 2007). Several authors (e.g. Saleem et
al. (2005) and Bertoldi et al. (2007)) comment directly on the impracticality of using n-best lists
to translate speech.

Although translation is fundamentally a non-monotonic relationship between most language
pairs, reordering has tended to be a secondary concern to the researchers who have worked on lat-
tice translation. Matusov et al. (2005) decodes monotonically and then uses a finite state reordering
model on the 1-best translation, along the lines of Bangalore and Riccardi (2000). Mathias (2007)
and Saleem et al. (2004) only report results of monotonic decoding of the systems they describe.
Bertoldi et al. (2007) solve the problem by requiring that their input be in the format of a confusion
network, which enables the standard distortion penalty to be used. Finally, the system described by
Zhang et al. (2005) use IBM Model 4 features to translate lattices. For the distortion model, they
use an approach similar to ours where they use the maximum probability value over all possible
paths in the lattice for each jump considered.

Applications of source lattices outside of the domain of spoken language translation have been
far more limited. Costa-jussà and Fonollosa (2007) take steps in this direction by using lattices
to encode multiple reorderings of the source language. Dyer (2007) uses confusion networks to
encode morphological alternatives in Czech-English translation.

The Arabic-English morphological segmentation lattices are similar in spirit to backoff transla-
tion models (Yang and Kirchhoff, 2006) which consider alternative morphological segmentations
and simplifications when a surface form is not found.

Parsing and formal language theory. There has been considerable work on parsing word lat-
tices, much of it for language modeling applications in speech recognition (Ney, 1991; Cheppalier
and Rajman, 1998; Hall and Johnson, 2003). Additionally, Grune and Jacobs (2008) describes an
algorithm for intersecting an arbitrary FSA (of which word lattices are a subset) with a CFG. Klein
and Manning (2001) formalizes parsing as a hypergraph search problem and presents an O(n3)
CFG parser for FSAs.

6 Conclusions
We have achieved substantial gains in translation performance by decoding compact representa-
tions of alternative source language analyses, rather than single-best representations. Our results
generalize previous gains for lattice translation of spoken language input, and we have further
generalized the approach by introducing an algorithm for lattice decoding using a hierarchical
phrase-based model. Furthermore we have shown that although word lattices complicate modeling
of word reordering, a simple heuristic offers good performance and enables standard distortion
models to be used with lattice input.

At this stage, we suggest taking an even more radical step. Up to this point, we have assumed
that the ambiguity encoded in lattices is primarily the fault of imperfect analyzers; if a perfect
analyzer could give us true single-best paths, we would simply use them in training and decoding.
However, there is a deeper observation to be made here, namely that the source language sentence



is not the only way that the author’s meaning could have been expressed. The “noisier channel,”
implemented using lattice decoding, makes it natural to conceive of the source sentence as just one
possible realization of the speaker’s intended meaning. We conjecture that introducing ambiguity,
by expanding that single realization into a lattice of possible alternative realizations, will improve
the translation of what was said by bringing the system’s input representations closer to what was
meant.
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